
M. wow--l
LA-UR -83-3290w

,

.

LA-uR--83-329O

DE04 003703

TITLE: RECOVER IT YOURSELF WITH USER LOGGING

Aulnonls) DIANE WEIR

SUBMITTEDTO lIEW1,ETT-PACKARDINTERl:A’rIONAl,USERS CROUP CONFEREP!CE
ANA1lEIM,CAI.IFORNIA, Februnry 27 - March 2, 19c14

INS(’I.AIROIX

Los
Msr&

/“1’

Dlsiiwllll WI Ill I Ills Iwl ~1”,’~::, ““ ,
,1’:1:1

Allarililos

Los Alamos National Laborator
Los Alamos,New Mexico 8754 ~

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

RECOVERIT YOURSELF WITH USER LOGGING

IMAGE logging is a nice feature except It only recovers IMAGEtransactions.
Wtlat can you do if you update multiple file types with a single transaction and
you need a logging system? User logging is your answer. By using this f~cility
and the recoverable programing technique described you can recover it yourself
w+th the same program that updates your filesets interactively. This paper will
address the recoverable program structure, the user logging conmands, and some
special operational considerations of user logging.

The recoverable program structure is fairly simple. The screen image is
written into the log file for each successful transaction. When you need to
recover your file~, the main program is run with a parameter that indicates re-
covery processing. For recovery procesrinc, the terminal and fonnflle are not
opened. Rather, the subprograms read the log file and process the transactions
exactly in the same way as it would interactively with full editing and updating
as needed to all file types. There ts no write to a terminal at the end of the
transact~on; instead the next log record Is read. If an error is detected
during the edit phase, the recovery process aborts.

1

RECWER IT YOURSELF PJITH USER LOGGING

by: Diane Heir

Los (+lmos Natiunal Laboratory
?.0. BOX 1663
IW$IL STOP P909
Los Alamos, New Mexico 87745

INTRODUCTIW

IMAGE logging is a good product that has proved to be ●n effective and
●ccurate way to save interactive transactions for recovery ●nd audit purposes.
fhere is one shortcoming with the product in that it only logs transactions

within the ItWiGE domain, Some applications require that KSAtl ●ndtlPE files be
updated in an on-line system, How can these ffles be recot’ered? One ●nswer is
to use ● r-covernble program structure that not only posts the interactive
transactions, but reovers them as well. The user logging facility is used to
store the successful transactions to ●~ther tape or disc, This psper will
dis(~~ss the recoverable program structuro ●nd the user logging subsystem.

LOGGING AW REC~JERING TIWWACTICB4S

THE RECOVERABLE PROGRAM STRUCTURE

I’his pr~gram structure was develop-d because there was ● nevd to save ●ll
update trar,sactions for ●n on-line payroll system that used IMAGE, HSAM, ●~d
PIPE files, A record is written to the log file for ●very successful update on
the file sets. Th@ r-cord loggmd looks just like the screen’s image that caused
the update, Thr on-line system can be run in interactive mode u%ing V/3000
uith users ●t terminalc ●ntering their transactions or in r~covery mod-, In
r-covery mode the log fi~e is read instead of the terminal, The ●dits ●re re-
done to insure that the data files were properly restored, then the transactions
● re postec! to the backup COPI,TS of the files. If ●ny of the ●dits fail the
progrwn ●borts; the recovery js probably being run mgainst the wrong set of
files or the date/time parwncters ●re wrong. The log file contains b~fore ●nd
●fter imag~s of the screen for ●udit reporting p’lrposes; for recovery only the
after ima3e~ ● re reposted on the change transactions, The deletes contain the
before imsg~ 01: the screw~ prior to the drletion, the ●dds, the ●ft~r jmag-.

THE USER LOG RECORD FORMTS 2

Although ths logging subsystem USQS sweral record types, the records to
concern yourself with ●re the usw records, coded two ●nd seven. The first nine
words of the 128 word record ●re r~served for the logging subsystem. The first
two words contain the record number, the next, the checksum. The fourth word is
important in that it contains the record code. Nerds five through seven co~~tain
the date ●nd time. The ●ighth word holds the log id with the ninth Word used to
hold the lengtk of the user ●rea. The user ●rea follows for the next 119 words.
Records are added to the 109 file via the bJRITELOG intrinsic. The file is in
128 word ASCII format that, through the use of the length parmeter$ ●,llow~
transactions of various lengths to be logged. If the write to the log file has
a user ●rea of 119 words or less, the transaction w~li physically be placed into
one 2-record. If the 119 word limitation is exce~ded, us many 7-records ●s
needed to complete the operation are written. For example, if the length of the
user area is 408 words, one will see one 2-record and three 7-records on the log
for the request, This gives the user the flexibility needed fo~ various uses
of the log files.

14hen desiqning the application the 2-record was defined tc contain certain
control and audit information. In COBOL syntax the log records were defined ●s
follows,

01 LOG-RECD.
05 LOG-SYSTEM-ARE,’,

10 FILLER PIC X(6)0
10 LOG-REC-CD PIC 9(4) cctlP .
10 FILLER PIC X(10)*

05 LCtG-USER-AREAo
10 LOG-USER PIC X(8).
10 LOG-SCREEN-CD PIC xxx*
10 LOG-BEF-AFT PIC x,
10 LOG-ACTI~ PIC x,
10 LOG-DATE PIC S9(7) chlP-3 .
10 LOG-TIME PIC S9(5) CCP’IP-3,
10 LOG-SCREEN-IMAGE Plc X(218).

05 LOG-C~T-AREA REDEFINES LOG-USER-AREA,
10 LOG-CONT-SCREEN PIC X(230).

The LOG-SYSTEM-ARKA is the nine worq ●rea res~rv?d by the user logging f?cility,
The LOG-USER-AREA is the definition of the 2-reccrd. It contains the user nanm
obtained from the WHCI intrinsic, thti ●pplication’s screer, code, a before/after
code, the screen’s ●ction code, the posting date ●nd time, followed by the first
218 characters of data. If ● continuation record was need~d th~ LOG-CCNT-SCREEN
contains the 7-record’s data, The bafore/after code is used primarily for audit
reporting. An ●dd transaction will contain only the ●fter record~ ● deltte, thq
before record. A change transaction will reflect both the before ●nd after
states, The screen image is remainder of the data written to the log flAe,

THE FAIN PROGR#l
3

The on-line system contains ● main menu progrwn that prompts for passuords,
opens the datab&set terminal, and formfilej ●nd displays the menu. The sub-
progrmw ●ctually upda~t the files. The menu’s fucstion is to control the flow
beween th~ subprogruns. The menu can be executed in interactive or recovery
mode. The main program knows if recovery or interactive mode is desired via the
use of run-time parameters. SNl in COBOL uas used if recovery moae uas needed.
Thus to run the program interactively, simply ;RM PAOOO1, to run for recovery,
:RLN FAOOO1; ’PARM=!440000’. The logic of the two modes is illustrated ●s follows.

INTERACTIVE MODE RECWERY MODE

Turn ●cho off and ask for passwords
Open th~ database
Turn @cho back on
Call the 14H0 intrinsic to find the

user’s name.
Gain access to the logging facility

OPENLOG
Open the formfile.
Open the terminal

RFAD-t.OgP
Display the menu screen
Read the menu
Call the subprosriun to service the

request
-or-

Go to the EXIT-ROUTINE if F8 was
pressed.

Go to READ-LOOP

Read the EDITOR file that has the from
date/time ●nd to date/time for the
recovery process.

FOPEN the log file specifying an old,
permaner,t file, opened for excluriive

via access,

READ-LOOP
Add 1 to the record number.
Call FREAD~JIR to read the file sequen-

ti~llyo
If th(’ log record code is not ● 2, ~kip

the record,
Test th~ date/time in the log record to

see that it fits the recovery para-
meters,

If the log’s time is less thzn the
recovery t]me, raad the next record.

lf the log’s time is greater than the

recovery time, go to EXIT-RCLITINE.
Subtract 1 from the rscord number of

the log file
Call the appropriate subprogram.
14hen the subprogram returns test the

returning screen code for the ●nd-
-of-file flag, If it is not set,
subtract 1 from the record number and
go to READ-LOOP. lf it is set go to
EXIT-ROUTINE.

EXIT.ROUTINE EXIT-ROUTINE
Cl~ae the terminal and formfile C1OS* the log fil~ via FCLOSE
Clo#e the databaw ●nd other files Close th~ databas~ ●nd other files
TerminJte the ●ccecs to the logging Stop run,

facility uith CLOSELOG.
Stop run,

14het~ a system failure occurs in the midtlle of the day, the operator must
first restore the files from the latest full and partial backup sets. Then the
elate and time of the last backup tape is ●ntered into an EDITOR file ●long with
the date End time of the system failure. This delimits the recovery process to
the time parameters sawed in the log file’s 2-record. The operator then stops

the logging process with the :LOG console cormmd.

The databzse is 6pened for exclusive ●ccess while recovery is running. This
insures that no processes are using the database until recovery is completed.
The log file is also opened in exclusive mode ● s ●n ●xtra safety measure. A
stop of the logging system forces all buffers to be flushed to their media so
the log file should be ●s complete ● s possible. If logging was not stopped
prior to recovery the exlus:ve open of the 109 file will fail. The 109 files is
then read using the FREADDIR call because the subprograms need to know whsre to
begin processing on the log file. The record number is reduced by one prior to
calling the subprogram so the subprogram can ●dd one to the record number before
reading the log file. This keeps the subprogrwn’s read loop consistent.

THE SUBPROGRAM

‘ihe subprogram’s structure is described below. In interactive mode the
screen is read and the data is ●dited, If the edits do not detect ● rrors the
database and other filts ●re updated. For delete ●nd ●dd transactions, the
screen image is ●dded to the log file via blRITELOG directly from the screen
image in working-storage. On chanqe transactions, the “before” screen is re-
built ●nd written to the log fi ‘ before the updated screen image is logged.
By comparing the ‘before” screen to the ‘after’ screen on the audit report the
changes can be isolated, The logic for the subprograms is outlined belot.),

INTERACTIVE MODE RECOVERY MODE

READ-LOOP READ-LOOP
Read screen (VREADFIELDS, Add 1 to record number, then FREADDIR

VFIELDEDITS, the log file.
VGETBUFfER) Bypass any records whote code is not ● 2

Test the ‘to date/time’ ●gainst the rec-
overy parameters. If the time has
●xpired or the ●nd of file is found
r~turn to the menu.

Seti if the screen belongs to this
subprogram, if not return to the
main progrwn.

Se- if the screen was too large to fit
into one log record. If so, cont-
inue reading until ‘he ●ntire rcrecn
is reastemblcd,

5

Edit tha transaction Ealt the transaction
(If ●rrors perform USETERROR (If ●rrors perform VSETERROR)

then 90 to RmD-LOQP)

Update the datasets ●nd other files Update the clatasets and other files

If add c del~te, write screen to log
If change, build “before’ screen

write it to the log then

log the ‘after’ %cr@en.

Inltlalize scr*m for next tran~action.

Go to READ-LOOP Go to REAP-LOOP

USETERI?OR ROUTINE
If orogran]S in ~nt~ractlue mode, call U5ETERROR for The field,
else ●bort.

In recovery mode, the routine to ●d]t the screen;s data and update the f]les
is the WMJM?routine ~erformed when recovery 1s run. Thc~e are not two separate
progr~s to ma]rita]n when changes OCCUr to ths cdlt or update crlterla. Ttte
same subprogram that UDdateS the datasets, K%, and MPE fllss interactlvelv
also recovers those t“afisactlons. A word of Cautlori. Since the ecl]t rout]nes
are performed for the recovery to insure data lntegrety, any ●iterations to the

edit cr]ter]a or the screer layout shouid be preceeded by s :STORE of the !Yata-
bases ana other f:les updated Cy the system.

There IS no need to dellmlt the logical .ransact]ons by special records
wrlttm to the log file. Il%GC logglng a~llmlts transactions by DE!BEGIN ●nd
~bEr4[J calls. Ihjs IS to Dre\”@fi. ●ny Incomplete bpdates fr6m occurr]ng. ThIS 1s

not nee~’Fd In this type of structure. The screen lS the loglcal transaction.
one screen may update ● variety of files but slnc? th~ Scr@@n is 13elng recoverec

instead of the recorcJ5, soa+clal ‘.riinsactlon dellmltlng ?’Qcords become unneres-
sarv .

THE C&?lfM AREfJ

The corynon ●rsa of the on-llne system ccntains the V/3(100 ●rea, tha database
rime, ●nd the data needecl for the logglng and recovery. PP-USER comes from a
call to b4H~ to determl..~ the user-s rime. PP-LOG-lNDEX IS the log lnctex returl,ed
from thm call to OWNLOG. LOG-FILE-NIJI is tiw flie number for the Log file when
run for recover}l it is required to FREADCJIR the 10S file. TPW PF-!KCWER-FLG

lnalcares the moae, ~ecovery or lnteractlue, tO the sub~rogruns. PP-REC-NUI
ino~catcs where rpcovp?y it to begin on the 109 file. PP-SCREEN-CODE t?lls

the main progrm the next screen to process or uh~t-er the sub~rogrmn reached
the ●nd of ?lle or the tlrne llmlt ●s Qxceeded. The -ecovery 1S term,lnat~d when
log fllc ●nds or the log rwcord s date ●ria time ●xceed PP-RECLKJER-TU-? lME.

01 f’pfq~+~~,

05 P~-D-BASE PIC X(8).
05 PP-uSFR Plc)((6).

05 PP-LOG-lNLjEX- PIC S9(9, C~P.
05 PP-REVCOVER-FLG PJC s9(41 cmP .
05 PP-REC-NUI PIC S9(9) IXW.
C15 PP-SCREEN-CD PIC x(d).
05 PP-EOF-FLAG REDE;lNCG PP-SCRE~J-C@

PIC” -
05 PP-RECOVER-TO-TI”

liJ PP-T-OGTE PIC S<L6).
10 PP-T-TIME PIC s9[4).

05 LOG-FILE-NLPI PIC S9[4) CCNIP.
OS V-COM-AREA Plr- x(lo2)._ ——

TESTING CONSIL)ERATIWS 6

How is testing conducted on ● logging system? When t~sting occurs ●gainst
a test aatabase, the transactions should not be logged to the production log
f]le, Instead the transactions ●re logged to ● test log f)le. The log file
identifier in main program is altered prior to the OPENLOC call. Also, the
recovery should be te~ted if the screen la~out was altered, This mandates that

the FOPEN of the log tile in recouery mode use tne file nane of the test log
file, not the production log file. This can be accomplished through a file
equation. Again the run parameter, SbJ2, was used to indicate whether testing
was occurring. To test interactively one would :RIAJ PAOO01;PARM+A20000, for
testing recovery, :RIJN PAOO01;PARM=!X60000 .

THE USER LOGGING SUBSYSTEM

THE LOGGING PROCESS

The user logging subsystem ●llows for one shared file buffer per l~oging
prccess regardless of the number of users accessing the log file. Awl.te is

~:r:;::d OR a Aog file via the kJRITELOG intrinsic, One may log to either tape
For disc logging, the log entries are loaded into the buffe~ ●rea of

the logging data segment. The records ●re written to disc when the buffer area
becomes full or when certain intrinsic: such as FLUSHLOG, BEGINLOG, or ENDLOG
are called, Tape logging actually writes the log buffer to disc for ● later
transfer to tape. Transfers to tape occur simultaneously uitfi writes tc the
disc log file because the two steps ●re controlled by separate processes, The
rea=on for the two processes is so that the process that loads the buffrr to
disc can continue without interruption. The process that writes the trzm! action
to tape can pause while a reel rewinds and another is mounted, This gives the
logging process the capability to continue without interruption ●t the ●nd of
a tape volume.

IPM%E uses the user logging subsystem to record updates to the databses
where logging is enabl~d. The user logging facility was written by a team in the
MPE qroup to provide the framework for It%GE logging. It+%3E records physical
records updated by DBPUT, DBUPDATE, ●nd DBDELETE calls if the logging on that
database is actiue.

GETTING STARTED kJITii USER LOGGING

This section will deal with the con-rnarids and utilities used for the logging
Subsystem. All users ●ccessing the user logging facility need to have logging,
or LG, capnhility. The systwn manager needs to ●llocate LG capability to the
●ccount, then the account manabw can allocate LW capability to himself and to
the users ●ccessing tne interactive logging system.

~HELLO MANAGER.SYS
]ALTACCT PAYROLL QMP%,AL,QL IOP,ND,SF,]~,&),LG
!{{ELLO MQR.PAYROLL
iALTUSER MGR;MP=ti,AL,QL,OP,ND,SF ,iA,m,LG
IALTUSER SALLY ;CAP-ND,SF, IA,E!A,LQ

Estimate the size of the 1c19 fil@s. Th@y shou.!d be large enough to contain

●t least one day’s worth of transactions. You may want to s~t the file size
large mough to hold a week’s ~~orth of transactions if weekly audit reporting
from the log file is desired. Build the log file with a record length of 12F7
words and ● file code of LOG. Decide on a 109 identifier (log id), The log id
is your link to the logging subsystem. Use the tGETLOG command to associate
the log file with the log id, to tell the subsystem where logging is to occur,
and to assign a password to the logging access. The password is not mandatory.

:BUILD PAD100;REC=128,5,F,ASCII ;DISC=I5OOO ,16;CODE=LOG
tGETLOG PADLOG;LOG=PAD1OO,DISC;PASS=

OPERATICN4L C@’&IDERATI134S

The command to actually start the logging process is the :L13G console com-
mand. There is a problem with the console commands in that one must have been
allowed the corfunand in order to issu? it from somewhere otbv than the console.
The contributed utility ALLO14ME will grant console command capability to users
other than the owner of the console, The account manager was allowed the LOG
corrsnand. OPERATOR.SfS was allowed both the LIMIT and LCIG commands so that
t!les~ earl be controlled by the batch job running the SYSDUMPS,

:RIN ALLOb4’lE,UTIL.SYS
Allowme Utiiity VCI.O 19 January 80
MGR.PAYROLL;CUIMANDS=LOG
END OF PRCJGRAM

The Jobstreml for the SYSWMPS sets the LIMIT to zero then stops the logging
processes before ● full or partial SYSDUMP. This allows the log file to be saved
on the backup tape. After the SYSDLblP has completed, the Jobstreans restart the
logging processes and raise the llmits back to normal. It is useful for the
account manager to have access to the ILOG command and OP capability so that the
lcgyinq process can be stopped and all files, including databases, can be stored
prior to clear~!,g the log file. OP capability allows ● user to store a databas~
without needing dangerous PM capability.

!JOB Pr4RTlAL~OPERATOR/GPPASS .SYS/SYSPASS
!RUN ALLOWME.UTIL.SYS
!LltllT 0,0
!CONTINUE
!LOG PADLOG,STOP
!FILE TP;DEV=7
!FILE LP;DEV=LP
!S)SDLH’IP ATP,ALP

10/20/83

Y
ILIMIT 2,16
!LOG PADLO(2,RESTART
!COJ

8

The system mancger might need tG ●lter the system configuration for the
logging to work on your ●pplication. In the system table section of the SYSDUIP
dialog, the manager defines the maximum number of logging processes allowed on
the system ●t any one time and the maximum number of users per logging process.
The system manager manual reccmwnends 2!0 fo]- both of these parameters but that
might not be enough. 14hen assigning these numbers remember that any It#+GE 1o9-
ging performed on the system needs to be taken into account ●lso.

One last operational consideration for the user logging facility is the
OPERATOR.SY5 startup procedure, Some shops stream a job and others use a UOC
file. In the logon UI)C for the console, the logging processes are restarted via
the :LCJG comunand,

STARTUP
OPTIONS LOG~,LIST

ALLON OPERATOR.SYS;C&iMANDS=CONSOLE
LCtG F’ADLOG,RESTART
HEADOFF 6
L REAMS ICI
JOBFENCE 4
OUTFENCE 4
STARTSPOOL LP
ALLOLf4TE EDITOR.PUB

(etc) ..O

There are other logg’ng cormnands that help one use the facility. :LISTLOG
lists the active lo~ identifiers on the system and their creators. :RELLOG del-
etes log identifiers from the user logging facility, :ALTLOG changes certain
characteristics of the log id such ●s the log file nane, the log destination, or
or the logglng password. :SHOWLOGSTATUS displays the status of all currently
active log files. 14hen the CIPER MIT was installed, the log identifiers were
corrupted. The fix was to delete the bad log ids with :RELLOG ●nd ●dd the good
ones back with :GETLOG. Fortunately, the 109 files were intact, just the
Identifiers were corrupted.

:LISTLOG ((lists active log identifiers>)

LOGID CREATOR LOGFILE
PADLOG M(iR.P6YROLL PAD1OO.PUB.PAYROLL

:ALTLCIG PADLOG; LOG=PAD1OO,TAPE ((changes log characteristics))
:

:SHC44LOGSTATUS ((status display of ●ctive 109 processes))

LOGID USERS STATE !WCORDS
~[~LcIG o Ihk+CT 225

tRELLOG PADLOG ((deletes ● log idcntifior))
:

THE LOG RECORDS WD THE!((FORMATS 9

There ●le nin~ record types In ● log fil~. The format of the log records
vary depending on the record type. Record type one is the openlog record. It
is generated whenever ● user ●ccesses ● logging system via the OPENLOG call.
The three-record is the eloselog record, generated when ● user executes the
CLOSELW intrinsic. There is a start or restart record, code six. Records
coded four and five are the transaction header and trailer record generated by
the BEGiNLOG and ENDLOG intrinsic. IMAGE uses these for D13BEGIN ●nd DEEt4D
calls, BEGINLOG ●nd ENDLOG ca~se the logging buffer to be flushed to disc; so
do IMBEGIN ●nd DBEND calls. The nine record is ● crash marker. 14hen logging
is restarted after a system failure while logging was ●ctive: recovery occurs
cm the log files. The crash marker tells the user logging subsystem where the
crash occurred so it can recover itself. The user records, code two ●nd seven,
were discussed in the first section.

lNTRINSICS USED IN LOGGING

A write call to the logging subsystem uses a mode paraneter, This parameter
tells the logging system which action to take if the buffer becomes full prior
to the write request. Mode one functions similar to no-wait 1/0; the process
continues after passing the request to t% logging subsystem. Mode zero forces
the process to wait until the logging system has processed the write to the 109
file. If the buffer is full and the write to the 109 file in mode zero, the
buffer is written to disc ●nd cleared. The ●ntry is placed into the buffer,
before control is returned to the calling progrm. The mode is also used for
other calls to the logging system ●nd operates in the same fashion.

Access to the logging facility is obtained via the OPSNLOG intrinsic. The
format is W’ENLOG index, logid, password, mode, status. The index returned is
used on subsequent calls to kJRITELOG and CLOSELOG. The logid contains the log
identifier, the password, the loqging password. The mode indicates the wait
request as discussed above. The status will contain ●rror codes if the OPENLOG
call failed.

The HRITELOG intrinsic format is NRITELOG index, data, length, mode, status.
The index is the sme index returned from the OPENLOG call. The data is the
user data to be written to the user ●rea of the log record, The length is the
size of the data being pnssed. Again the mod~ is the wait/nowait request.

The CL13SELOG intrinsic is U’bed to stop ●ccess to the logging facility. Its
Its format is CLOSELOG index, mode, status. Index, mode, ●nd status are the
same ●s for the I14RITELOG intrinsic previously described.

CONCLUSION

There ●re various methods ●vailabl~ to users to recover lost interactive
transactions. The method previously oescribed is one way to ●pproach the task.
IMAGE logging is probably preferred since the progranuner does not have to be
involved with recovery. Unfortunately, IW$GE logging is not ●lways th- answer.

Thert are files outside the IFMGE domain, KS&l ●nd MPE files, that ●re updated
via interactive prograns that ●lso need to be recovered. The user logging fac-
ility is ●n ●fficient ●nswer to save those transactions that ●re critical to the
application. The recoverable progrm structure described may be ● useful tech-
nique since the chances of inconsistent results between two $@parate posting
progrwns ●re ●laminated. There is ●xtra ,ime ?aquired ‘to dwelop ●nd maintain
the self-recovering progr#ns, but the time is probably less than having one
program post interactively ●nd ●nether post for recovery. There is ● b~~tter
chance of data consistency if one progran does ●ll the posting, be it inter-
●ctive or r~covery.
/

